Meta-Heuristics in Short Scale Construction: Ant Colony Optimization and Genetic Algorithm
نویسندگان
چکیده
The advent of large-scale assessment, but also the more frequent use of longitudinal and multivariate approaches to measurement in psychological, educational, and sociological research, caused an increased demand for psychometrically sound short scales. Shortening scales economizes on valuable administration time, but might result in inadequate measures because reducing an item set could: a) change the internal structure of the measure, b) result in poorer reliability and measurement precision, c) deliver measures that cannot effectively discriminate between persons on the intended ability spectrum, and d) reduce test-criterion relations. Different approaches to abbreviate measures fare differently with respect to the above-mentioned problems. Therefore, we compare the quality and efficiency of three item selection strategies to derive short scales from an existing long version: a Stepwise COnfirmatory Factor Analytical approach (SCOFA) that maximizes factor loadings and two metaheuristics, specifically an Ant Colony Optimization (ACO) with a tailored user-defined optimization function and a Genetic Algorithm (GA) with an unspecific cost-reduction function. SCOFA compiled short versions were highly reliable, but had poor validity. In contrast, both metaheuristics outperformed SCOFA and produced efficient and psychometrically sound short versions (unidimensional, reliable, sensitive, and valid). We discuss under which circumstances ACO and GA produce equivalent results and provide recommendations for conditions in which it is advisable to use a metaheuristic with an unspecific out-of-the-box optimization function.
منابع مشابه
A hybrid ant colony optimization algorithm to optimize capacitated lot-sizing problem
The economical determination of lot size with capacity constraints is a frequently complex, problem in the real world. In this paper, a multi-level problem of lotsizing with capacity constraints in a finite planning horizon is investigated. A combination of ant colony algorithm and a heuristic method called shifting technique is proposed for solving the problem. The parameters, including the co...
متن کاملA Hybrid Modified Meta-heuristic Algorithm for Solving the Traveling Salesman Problem
The traveling salesman problem (TSP) is one of the most important combinational optimization problems that have nowadays received much attention because of its practical applications in industrial and service problems. In this paper, a hybrid two-phase meta-heuristic algorithm called MACSGA used for solving the TSP is presented. At the first stage, the TSP is solved by the modified ant colony s...
متن کاملPortfolio Optimization by Means of Meta Heuristic Algorithms
Investment decision making is one of the key issues in financial management. Selecting the appropriate tools and techniques that can make optimal portfolio is one of the main objectives of the investment world. This study tries to optimize the decision making in stock selection or the optimization of the portfolio by means of the artificial colony of honey bee algorithm. To determine the effect...
متن کاملCombining Harmony search algorithm and Ant Colony Optimization algorithm to increase the lifetime of Wireless Sensor Networks
Wireless Sensor Networks are the new generation of networks that typically are formed great numbers of nodes and the communications of these nodes are done as Wireless. The main goal of these networks is collecting data from neighboring environment of network sensors. Since the sensor nodes are battery operated and there is no possibility of charging or replacing the batteries, the lifetime of ...
متن کاملSolving the Vehicle Routing Problem with Simultaneous Pickup and Delivery by an Effective Ant Colony Optimization
One of the most important extensions of the capacitated vehicle routing problem (CVRP) is the vehicle routing problem with simultaneous pickup and delivery (VRPSPD) where customers require simultaneous delivery and pick-up service. In this paper, we propose an effective ant colony optimization (EACO) which includes insert, swap and 2-Opt moves for solving VRPSPD that is different with common an...
متن کاملApplying Two-Stage Ant Colony Optimization to Solve the Large Scale Vehicle Routing Problem
The vehicle routing problem (VRP) is an important problem in the field of logistics management. As an NP-hard problem, the VRP real world sized instances cannot be solved to optimality within reasonable times. This research aims to develop a two-stage ant colony optimization (TACO) algorithm, which possesses a two-stage solution construction rule, to solve the large scale vehicle routing proble...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016